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Abstract
This work provides an ecological approach to learning words
and speech units through natural interactions, without the need
for preprogrammed linguistic knowledge in form of phonemes.
Interactions such as imitation games and multimodal word
learning create an initial set of words and speech units. These
sets are then used to train statistical models in an unsupervised
way.
Index Terms: multimodal learning, ecological approach, motor
learning, interactions

1. Introduction
Infants are able to acquire impressive language skills from very
little speech exposure, and are doing this in a natural way
through the interaction with their caregivers. Computer based
systems for automatic speech recognition (ASR) not only re-
quire much more data to achieve comparable word error rates
[1], but also require much of the data to be hand labeled. As a
result, traditional ASR-system are still far from human capabil-
ities when it comes to flexibility, and it is therefore interesting
to try to mimic the way infants learn their language. Unfortu-
nately it is not completely understood how infants do this, nor
to which extent linguistic knowledge is already preprogrammed
in the human brain. Here we follow the ecological and emer-
gent approach [2] and assume that linguistic structures such as
phonemes are learned through the interaction with the environ-
ment rather than innate.

The infants’ relatively lack of speech exposure compared
to ASR-systems, is compensated by the richness of the data
directed to them. Infant directed speech (IDS) is highly struc-
tured and characterized by what seems like physically motivated
tricks to maintain the communicative connection to the infant,
actions that at the same time also may enhance linguistically rel-
evant important aspects of the signal. For example, target words
are typically highlighted using focal stress and utterance-final
position [3] [4]. Also, whereas communication between adults
usually is about exchanging information, speech directed to in-
fants is of a more referential nature. The adult refers to objects,
people and events in the world surrounding the infant [5]. Be-
cause of this, the sound sequences that the infant hears are very
likely to co-occur with actual objects or events in the infant’s
visual field.

This type of information has also be used in computer-
based systems such as CELL [6], Cross-channel Early Lexical
Learning. There, an architecture for processing multisensory
data is developed and implemented in a robot. The robot is able
to acquire words from untranscribed acoustic and video input
and represent them in terms of associations between acoustic
and visual sensory experience. Compared to training conven-
tional ASR systems that maps the speech signal to human spec-

ified labels, this is an important step towards creating more eco-
logical models. However, significant shortcuts are still taken,
such as the use of a predefined phoneme-model where a set of
40 phonemes are used and the transition probabilities are trained
off-line with a large scale database. An unsupervised model for
learning words and speech units from multisensory data is de-
scribed in [7]. However, the method requires words to be readily
segmented and does not work for natural interactions. An alter-
native method is to completely avoid the phonemes and directly
look for word-like segments using simple methods for pattern
matching or Dynamical Time Warp (DTW) [8] [9]. According
to the ecological approch to language acquisition, these simple
models may very well describe how infants are able to learn
their first words. Underlying concepts like phonemes may in-
stead be seen as emergent consequences imposed by increasing
representation needs [10] [11].

While the exact phonemes differ among languages some
phonemes, such as the corner vowels [i], [a] and [u], are widely
used. This is natural when looking at how these are produced,
as these are defined as the extreme points in our articulatory
vowel space. Also other phonemes may be better understood
when looking at how they are produced. Since infants do not
only learn to recognize speech sounds, but also to produce
them, they may take advantage of this also when learning their
speech units. The parallel development of speech production
and recognition during an infant’s first year has been described
in [12]. At birth infants are able to discriminate phonetic con-
trasts of all languages, but later develops a "phonetic magnet"
that forces sound to be perceived as one of the phonemes that
are used in the particular language. Interestingly, infants seem
to begin producing such sounds shortly before they show a pref-
erence for perceiving these same sound. This relationship be-
tween sounds that we can produce and those that we perceive
leads to believe that the motor area in the brain is involved not
only in the task of production, but also in that of recognition.
This was first suggested in the Motor Theory of speech per-
ception [13] and is supported by more recent work in neuro-
science [14]. While we do not take a pure motor-based ap-
proach, we augment the traditional acoustic features with ad-
ditional motor-based information. Also, by being able to pro-
duce speech sounds it becomes possible for the computer-based
system to take part in imitation games that may have an impor-
tant role in human language development. Several works have
shown that motor-learning can be used for finding speech units
[15] [16]. This work shows how interactions can be used to cre-
ate an initial set of words and speech units, and how to use these
to build more advanced statistical models of the language.

The rest of paper is organized as follows. In section 2 we
describe the initial word learning, based on pattern matching
and multimodal information. In section 3 we describe how mo-
tor learning and imitation games can be used to bootstrap the
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learning of speech units. The statistical models are described in
section 4, and experimental results are presented in section 5.
Finally conclusions are given in section 6.

2. Multimodal word learning
In order to create an initial word model the robot looks for re-
curring acoustic events and associate those to visual objects in
its environment. A short term memory (10-20 s length) is used
to restrict the search space and increase the possibility that the
recurring acoustic patterns that are found refer to the same ob-
ject. Recurring patterns in the short-term memory are paired
with the visual object and send to a long-term memory where
they are organized in hierarchical tries. Finally, the mutual in-
formation criterion is used to find which words are consistently
used for a certain object.

2.1. Finding recurring events

In order to find recurring patterns the sound stream is first se-
quenced into utterances. This is done automatically when the
sound level is under a certain threshold value for at least 200 ms.
Each utterance within the short term memory at a given time is
compared pair-wise with all other utterances in the memory in
order to find recurring patterns. The utterances are aligned in
time and we calculate the sum of differences between their mel
coefficients creating a vector with the acoustic distance between
the two utterances at each window. The second utterance is then
shifted forward and backward in time and for each step a new
distance vector is calculated. These are then combined into a
distance matrix. Word candidates are found by looking for min-
ima in the distance matrix and then moving left and right in the
matrix as long as the distance metric is below a certain thresh-
old.

In order to take advantage of the structure of infant di-
rected speech and to mimic infants’ bias towards target words
in utterance-final position and focal stress, we also check for
these features. Focal stress is found by looking for the F0-peak.
While there are many ways for adults to stress words (e.g. pitch,
intensity, length) it has been found that F0-peaks are mainly
used in infant directed speech [3]. If the F0-peak of the utter-
ance as a whole is within the boundaries of the word candidate,
the word candidate is considered to be stressed. If a word candi-
date is not stressed and in utterance-final position we may reject
it with a specified probability.

The same pattern matching technique is also used to com-
pare visual objects. Using the silhouette of the object we create
a representation of its shape by taking the distance between the
center of mass and the perimeter of the silhouette. When com-
paring two object representations with each other we first nor-
malize the vectors and then perform a pattern matching, much
in the same way as for the auditory representations, by shifting
the vectors one step at a time. By doing this we get a measure-
ment of the visual similarity between objects that is invariant to
both scale and rotation. For details please refer to [8].

2.2. Hierarchical clustering

When both a word candidate and a visual object are found, their
representations are paired and send them to a long term mem-
ory. To organize the information we use an hierarchical cluster-
ing algorithm. Word candidates and visual objects are organized
independently into two different tree clusters. The algorithm
starts by creating one cluster for each item. It then iteratively
joins the two clusters that have the smallest average distance

between their items until only one cluster remains.
While the algorithm is the same for both trees, the distance

measure varies slightly between them. The distance between the
visual objects is measured directly through the pattern matching
explained above. For the acoustic similarity we use Dynamic
Time Warp (DTW) to measure the distance between different
word candidates. The reason to use DTW instead of directly
applying the pattern matching described earlier is to be less sen-
sitive to how fast the word candidate is pronounced.

2.3. Multimodal integration

When we have interconnected multimodal representations,
which is the case for the word candidates and visual objects
that assumingly refers to the same object we can make use of
these connections, not only to create associations, but also to
find where we should cut the trees in order to get a good repre-
sentations of the words and the objects. In order to find which
branch in the word candidate tree that should be associated with
which branch in the object tree we use the mutual information
criterion. In the general form this can be written as

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y)log

(
p(x, y)

p1(x)p2(y)

)
(1)

Where p(x, y) is the joint probability distribution function
of X and Y , and p1(x) and p2(y) are the marginal probability
distribution functions ofX and Y respectively.

We want to calculate I(X;Y ) for all combinations of clus-
ters and objects in order to find the best word representations.
For a specific word cluster A and visual cluster V we define the
binary variablesX and Y as

X = {1 if observation ∈ A; 0 otherwise}

Y = {1 if observation ∈ V ; 0 otherwise}

The probability functions are estimated using the relative
frequencies of all observations in the long-term memory, i.e.
p1(x) is estimated by taking the number of observations within
the clusterA and dividing with the total number of observations
in the long-term memory. In the same way p2(y) is estimated
by taking the number of observations in the cluster V and again
dividing with the total number of observations. The joint prob-
ability is found by counting how many of the observations in
cluster A that is paired with an observation in cluster V and
dividing by the total number of observations.

3. Bootstrapping speech units
The robot can learn an initial set of speech unit by imitating
its caregiver. To do this the robot needs to be able to produce
sounds. It has therefore been equipped with a simulated vocal
tract [18], and a synthesizer. It also has a neural network that is
used as an audiomotor map, which maps speech data to vocal
tract positions. This audiomotor map must be learnt before the
robot can participate in the imitation games.

3.1. Learning the audiomotor map

To learn the audiomotor map the system first makes use of bab-
bling where it makes random articulations and listens to the
sound produced. If the sound is over a threshold level the sys-
tem tries to map the sound back to the sensorimotor map. The
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Figure 1: Clusters of the extracted word candidates (above) and
visual objects (below), and the four word-object connections
with highest mutual information.

mapped positions are then compared to the original ones and
the error is used to update the sensorimotor map with back-
propagation. By repeating this the error will gradually decrease.

However, in the same way as the sound produced by an in-
fant is different from a similar sound produced by an adult, the
sound produced by the robot is different from that of its care-
giver. This can be overcome if the caregiver imitates the robot
and thereby allows the robot to use not only its own utterance,
but also that of the caregiver, to update the map. We have previ-
ously shown that prosodic features can help the system to decide
if there is an imitation or not [17].

3.2. Learning speech units

Once the map is learned, the system can use a parroting be-
haviour where it tries to imitate the caregiver. Even if the map
is not perfect, the caregiver can often get the system to repeat
the desired speech sound by slightly changing the voice. For
most of vowels it is not necessary to adapt the voice too much.
Typically between one and ten attempts were enough to obtain
a satisfying result. When the caregiver is happy with the sound
produced by the system it gives positive feedback which causes
the system to store the current articulator positions in its speech
motor vocabulary. Using this method we have been able to teach
the system vocal tract positions for nine Swedish vowels (a, o,
u, å, e, i ,y, ä, ö).

4. Creating statistical models
While the initial word learning works well for creating a small
vocabulary from a limited number of demonstrations, the hier-
archical trees continuously grow as the number of demonstra-
tions increase. To avoid having to store every single example of
a word or a speech unit, it becomes necessary to create statisti-
cal models. In ASR-system, words are typically modelled using
Hidden Markov Models (HMM). Instead of directly creating a
HMM for each word, it is more efficient to create a model for
each speech unit and then concatenate those into words. Since
we don’t know the number of speech units we start with a small
number and then increase the number iteratively as long as it
improves our word model. The speech units are found by clus-
tering speech data in an unsupervised way using K-means. As
an initial guess for the number of clusters, and their center po-

sitions, we can use the speech units that were learnt in the im-
itation games. This bootstrapping is an important step since
K-means is relatively sensible to the initial guess.

For the statistical modelling, the speech signal is repre-
sented both by the MFCC (including their first and second
derivatives) and the mapped vocal-tract positions, resulting in
a vector of 46 features for each window.

Next, a Gaussian model is calculated for each speech unit,
and all speech units are then connected to themselves and all
others in a HMM. The same speech data that was used to create
the clusters is now used to estimate the transition probabilities
and updating the Gaussian models using the Baum-Welch EM
algorithm. This results both in updated models for our speech
units and the creation of a phonotactic language model.

The statistical word models are estimated by selecting the
speech example in the center of each cluster in the initial word
model, and calculating the most likely path in the phonotactic
model for those observations. This is done with the Viterbi al-
gorithm, and the resulting path is then used as a HMM for the
word.

Finally the word models are evaluated by calculating the
word recognition rate for all remaining examples in the initial
word cluster. A new cluster is inserted and the process is re-
peated for as long as the recognition rate improves. The com-
plete process can be summarized in the following steps:

1. K-means is used to cluster the speech data into a speci-
fied number of speech units in an unsupervised manner.
A Gaussian model is then created for each speech unit.

2. A phonotactic model is created by estimating the transi-
tion probabilities between all speech units using Baum-
Welch algorithm. At the same time the Gaussian models
are reestimated for each speech unit.

3. A HMM is created for each word in the initial word
model by choosing the speech example in the center of
each cluster and calculating the most likely sequence of
speech units with the Viterbi algorithm.

4. The word recognition rate is calculated on a test set con-
taining the remaining examples in each cluster from the
initial word model.

5. Add a speech unit and reiterate as long as the recognition
rate increases.

5. Experimental results
The multimodal word learning has been implemented in a hu-
manoid robot. In a previous experiment the robot was able to
learn the names of a number of toys that the caregiver placed in
front of the robot Figure 1. In this experiment we were mainly
interested in testing the statistical model. The robot was there-
fore taught a number of additional words. Like in the previous
experiments only full sentances and no single words were given
to the robot. However, this time no images were used. Instead
the utterances were labeled with a number representing the ob-
ject. The pattern matching resulted in 88 word candidates that
were divided into 8 different clusters by using hierarchical clus-
tering and the mutual information criterion.

For each cluster we then created a statistical model using
the method described above. This was done both with and with-
out bootstrapping. With bootstrapping, the vowels learnt by
imitation were used as initial guesses for the positions of the
speech units. Without bootstrapping, random samples from the
speech data was used for initializing the K-means algorithm.
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We started with only 5 speech units and iteratively increased
the number until 12 speech units when there was no longer any
improvements in the recognition rate. The results are shown in
Figure 2.
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Figure 2: Word recognition rates for different number of speech
units.

The best result, 98% recognition rate, was obtained when
using 10 speech units and bootstrapping. The resulting word
models are shown in Table 1. Note that some of the speech
units have a close to one-to-one relation with real phonemes,
such as 1=a and 3=m.

Table 1: Statistical word models for 10 speech units with boot-
strapping

word representation
siffy 5 7 5 7
pudde 9 6 10 5 8
docka 6 10 6 10 5 8
pappa 6 1 6 10 6 1
mamma 3 1 3 1
lampa 7 9 1 2 3 6 10 6 1
pippi 7 5 10 6 7
vovve 4 2 6 2 6 5 2 9

6. Conclusions and future work
This work has presented an ecological approach where words
and speech units are learnt through natural interactions with-
out any preprogrammed linguistic knowledge in the form of
phonemes. Initial word models are found using pattern match-
ing and multimodal information. These can then be used to
create statistical models. We have also show that the statisti-
cal models can be improved by teaching the robot a number of
initial speech units that can be used to bootstrap the statistical
learning. This can be done through the use of interactions in the
form of imitation games.

Near future work includes testing this model on larger data
sets. The model can also be extended to learn actions and events
and higher level information such as grammar.
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